

Selection Procedure

The following selection procedure is applicable to both reciprocating and screw compressors. (Refer to factory for selection on centrifugal compressors.) The total heat of rejection for the system is determined by adding the evaporator load, expressed in kW, and the absorbed kW of the compressor motor. This procedure applies to both open type and hermetic compressors.

Once the heat of rejection has been determined, multiply it by the factor for the specified operating conditions (condensing temperature and wet bulb temperature) obtained from either Table 1 or Table 2. The resultant figure is then used to select a unit from Table 3.

EXAMPLE

Given:	1000 kW Evaporator Load, Ammonia
	Refrigerant at 36°C Condensing
	Temperature, 24°C Wet Bulb Temperature
	with a 300 kW Compressor.

Selection:	Evaporator Load	=	1000 kW
	Compressor Load	=	300 kW
	Total	=	1300 kW
		Hea	at of Rejection

From Table 2, the Capacity Factor for 36°C Condensing Temperature and 24°C Wet Bulb temperature = 1.20

1300		1,20		1560
(Total Heat of Rejection)	Х	(Capacity Factor)	=	(Corrected Heat Rejection Load)

TABLE 1 R-22 and R-134a Heat Rejection Factors

Therefore, from Table 3 select LSCB-370, or LRC-379, or PMCB 375, or PMCB 385 depending upon layout, fan kW, and any other design considerations.

Note:

For screw compressor selections employing water cooled oil cooling, select a condenser for the total kW as in the example. The condenser can then function in one of two ways:

(1) Recirculating water from the water sump can be used directly in the oil cooler. A separate pump should be employed and the return water should be directed into the water sump at the opposite end from the pump suction.

(2) The condenser coil can be circuited so that water or a glycol-water mixture for the oil cooler can be cooled in a separate section of the coil. Specify load and water flow required.

For refrigerant injection cooled screw compressors select the condenser in the same manner as shown in the example.

If the oil cooler is supplied by water from a separate source, then the oil cooling load should be deducted from the heat of rejection before making the selection.

Pres	ensing sure, Pa)	Cond. Temp.		WET BULB TEMPERATURE, °C.																
22	134-a	°C	10	12	14	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1090	669	30	1,07	1,15	1,25	1,38	1,47	1,57	1,69	1,83	2,00	2,23	2,50	2,86	3,36	_	_	_	_	—
1154	718	32	0,94	1,01	1,09	1,19	1,26	1,32	1,40	1,49	1,60	1,74	1,90	2,11	2,36	_	—		_	_
1220	759	34	0,85	0,90	0,97	1,04	1,09	1,14	1,20	1,26	1,34	1,43	1,54	1,66	1,81	2,02	2,31	-	-	—
1253	785	35	0,80	0,85	0,91	0,97	1,02	1,06	1,11	1,15	1,21	1,29	1,37	1,46	1,56	1,71	1,89	2,13	2,41	2,77
1287	814	36	0,77	0,81	0,86	0,92	0,96	1,00	1,04	1,07	1,13	1,19	1,26	1,34	1,43	1,56	1,71	1,90	2,14	2,43
1359	856	38	0,70	0,74	0,78	0,82	0,85	0,88	0,90	0,93	0,96	1,01	1,06	1,11	1,18	1,26	1,35	1,47	1,62	1,78
1431	915	40	0,65	0,67	0,70	0,73	0,76	0,78	0,80	0,83	0,86	0,89	0,93	0,97	1,02	1,08	1,14	1,22	1,32	1,44
1508	978	42	0,59	0,62	0,64	0,67	0,68	0,70	0,72	0,74	0,77	0,80	0,83	0,86	0,89	0,94	0,98	1,04	1,11	1,19
1587	1026	44	0,54	0,56	0,59	0,61	0,62	0,63	0,65	0,66	0,68	0,70	0,73	0,75	0,78	0,82	0,85	0,89	0,92	0,97

TABLE 2 Ammonia (R-717) Heat Rejection Factors

Condensing	Cond.		WET BULB TEMPERATURE, °C.								°C.								
Pressure, (KPa)	Temp. °C	10	12	14	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1063	30	0,95	1,03	1,12	1,23	1,31	1,40	1,51	1,63	1,79	1,99	2,24	2,56	3,00	_	—	—	_	—
1133	32	0,84	0,90	0,97	1,06	1,12	1,18	1,25	1,32	1,43	1,55	1,70	1,88	2,11	—	—	-	-	—
1206	34	0,76	0,81	0,86	0,93	0,98	1,02	1,07	1,12	1,19	1,28	1,38	1,48	1,61	1,80	2,06	-	—	—
1245	35	0,71	0,76	0,81	0,87	0,91	0,95	0,99	1,03	1,08	1,15	1,23	1,30	1,39	1,53	1,69	1,90	2,15	2,47
1284	36	0,69	0,73	0,77	0,82	0,86	0,89	0,92	0,96	1,01	1,07	1,13	1,20	1,28	1,39	1,53	1,70	1,91	2,17
1365	38	0,63	0,66	0,69	0,73	0,76	0,78	0,81	0,83	0,86	0,90	0,94	0,99	1,05	1,12	1,21	1,31	1,44	1,59
1451	40	0,58	0,60	0,62	0,65	0,67	0,70	0,72	0,74	0,76	0,80	0,83	0,87	0,91	0,96	1,02	1,09	1,18	1,29
1539	42	0,53	0,55	0,57	0,60	0,61	0,63	0,64	0,66	0,68	0,71	0,74	0,76	0,80	0,84	0,88	0,93	0,99	1,06
1630	44	0,49	0,50	0,52	0,54	0,56	0,56	0,58	0,59	0,61	0,63	0,65	0,67	0,70	0,73	0,76	0,79	0,83	0,86

LSCB - Centrifugal Fan Models											
Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base		
LSCB-36	155	LSCB-210	904	LSCB-400	1722	LSCB-620	2669	LSCB-950	4090		
41	177	225	969	410	1766	625	2691	960	4133		
48	207	240	1033	430	1851	650	2798	980	4219		
54	232	250	1076	431	1855	660	2841	1000	4305		
65	280	280	1205	450	1937	690	2970	1020	4391		
70	301	281	1206	460	1980	691	2972	1030	4434		
75	323	295	1270	475	2045	720	3100	1060	4563		
80	344	300	1292	480	2066	721	3102	1080	4649		
90	387	310	1335	490	2109	755	3250	1100	4736		
100	431	315	1356	500	2153	770	3315	1120	4822		
110	474	330	1421	510	2196	800	3444	1180	5080		
120	517	335	1442	515	2217	805	3466	1250	5381		
135	581	345	1485	530	2282	820	3532	1310	5640		
150	646	355	1528	540	2325	860	3702	1380	5941		
155	667	360	1550	550	2368	861	3704	1440	6199		
170	732	370	1593	560	2411	900	3875	1510	6501		
185	796	385	1657	590	2540	920	3961	1610	6931		
200	861	386	1662	591	2544						

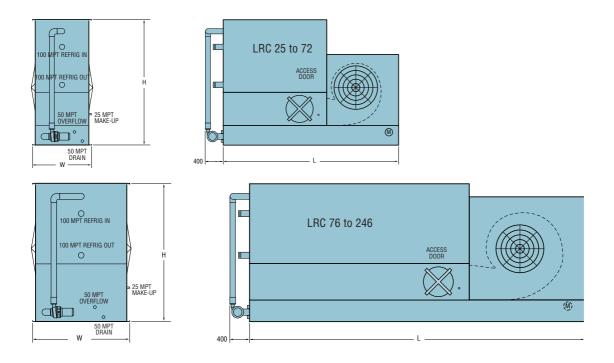
	LRC - Centrifugal Fan Models											
Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base			
LRC - 25 27 29 35 38 42 48 51 58	108 116 125 151 164 181 207 220 250	LRC - 65 72 76 84 91 101 114 108 116	280 310 362 392 435 491 465 500	LRC - 128 131 140 155 174 183 190 201 213	551 564 603 667 749 788 818 865 917	LRC - 225 233 246 188 211 227 240 255 269	969 1003 1059 809 908 977 1033 1098 1158	LRC - 249 287 300 321 336 361 379	1072 1236 1292 1382 1446 1554 1632			

	Power-Mizer Models											
Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base			
PMCB-190 210 220 235 240 250 275 295 325 350	818 904 947 1012 1033 1076 1184 1270 1399 1507	PMCB-360 375 390 415 435 455 480 510 535 560	1550 1614 1679 1787 1873 1959 2066 2196 2303 2411	PMCB-580 600 630 660 725 755 775 815 815	2497 2583 2712 2841 2970 3121 3250 3336 3509 3681	PMCB-885 960 1000 1015 1030 1080 1120 1175 1260 1320	3810 4133 4305 4370 4434 4649 4822 5058 5058 5424 5683	PMCB-1380 1410 1485 1540 1630 1710 1770	5941 6070 6393 6630 7017 7362 7620			

	Alternate Power-Mizer Models*												
Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base	Model No.	kW Base				
PMCB-175 290 330 335 385	753 1248 1421 1442 1657	PMCB-425 450 475 495 540	1830 1937 2045 2131 2325	PMCB-585 645 705 770	2518 2777 3035 3315	PMCB-805 850 910 950	3466 3659 3918 4090	PMCB-1060 1110 1510 1550	4563 4779 6501 6673				

Unit Selections

Selections for all evaporative condensers can be made by using EVAPCO's IES computer selection software.


IES provides quick and accurate selections at the click of a button. In addition to selections, the program displays unit drawings,

dimensional and shipping information. Please contact your local sales representative or visit the EVAPCO Europe web.

NOTE: For applications requiring layout or fan kW combinations not shown above, please consult the factory or your EVAPCO representative. * Alternate Power-Mizer models represent selections for alternate plan area or low fan kW applications. Standard models should be used for the lowest first-cost selection.

Low Silhouette Evaporative Condenser Centrifugal Fan Models LRC 25 to 246

TABLE 4 Engineering Data

		FANS		WEIGH	TS (kg)	**R-717	SPR/	Y PUMP	REMOTE	SUMP	DIN	IENSIONS (I	nm)
UNIT NO.	N°	kW*	m³/s	Shipping	Operating	Operating Charge (kg)	kW	l/s	Liters Req'd***	Conn. Size	HEIGHT H	LENGTH L	WIDHT W
LRC- 25	1	0.75	3.1	1050	1520	19	0,37	6,3	303	100	2026	3083	1029
27	1	1,1	3,6	1050	1525	19	0,37	6,3	303	100	2026	3083	1029
29	1	1,5	3,9	1050	1525	19	0,37	6,3	303	100	2026	3083	1029
35	1	1,1	3,5	1200	1685	27	0,37	6,3	303	100	2026	3083	1029
38	1	1,5	3,9	1200	1685	27	0,37	6,3	303	100	2026	3083	1029
42	1	2,2	4,4	1205	1690	27	0,37	6,3	303	100	2026	3083	1029
48	1	4	5,2	1210	1695	27	0,37	6,3	303	100	2026	3083	1029
51	1	2,2	4,3	1365	1860	34	0,37	6,3	303	100	2216	3083	1029
58	1	4	5,1	1370	1865	34	0,37	6,3	303	100	2216	3083	1029
65	1	4	5,0	1540	2050	42	0,37	6,3	303	100	2407	3083	1029
72	1	5,5	5,8	1565	2070	42	0,37	6,3	303	100	2407	3083	1029
LRC-76	1	4	7,6	1835	2680	43	0,75	10	455	150	2026	3731	1540
84	1	5,5	8,7	1850	2700	43	0,75	10	455	150	2026	3731	1540
91	1	4	7,4	2075	2945	55	0,75	10	455	150	2216	3731	1540
101	1	5,5	8,5	2120	2985	55	0,75	10	455	150	2216	3731	1540
114	1	5,5	8,3	2365	3250	67	0,75	10	455	150	2407	3731	1540
LRC-108	1	5,5	10,6	2380	3660	61	1,1	16	643	150	2026	4636	1540
116	1	7,5	11,7	2400	3675	61	1,1	16	643	150	2026	4636	1540
128	1	11	13,3	2450	3725	61	1,1	16	643	150	2026	4636	1540
131	1	5,5	10,4	2760	4065	79	1,1	16	643	150	2216	4636	1540
140	1	7,5	11,4	2770	4080	79	1,1	16	643	150	2216	4636	1540
155	1	11	13,1	2820	4130	79	1,1	16	643	150	2216	4636	1540
174	1	11	12,8	3215	4550	99	1,1	16	643	150	2407	4636	1540
183	1	11	12,6	3555	4920	118	1,1	16	643	150	2597	4636	1540
LRC-190	1	15	16,2	3465	5250	106	1,5	21,8	908	200	2242	5553	1540
201	1	18,5	17,4	3470	5255	106	1,5	21,8	908	200	2242	5553	1540
213	1	15	15,8	3955	5780	132	1,5	21,8	908	200	2432	5553	1540
225	1	18,5	17,0	3965	5785	132	1,5	21,8	908	200	2432	5553	1540
233	1	22	18,1	3975	5790	132	1,5	21,8	908	200	2432	5553	1540
246	1	22	17,7	4430	6295	157	1,5	21,8	908	200	2623	5553	1540

* For dry operation or for external static pressure up to 125 Pa use next larger size fan motor.

** Refrigerant charge is shown for R-717. Multiply by 1.93 for R-22 and 1.98 for R-134a.

***Liters shown is water in suspension in unit and piping. Allow for additional water in bottom of remote sump to cover pump suction and strainer during operation. (300 mm would normally be sufficient.)

Application

Design

Evapco units are heavy-duty construction and designed for long trouble-free operation. Proper equipment selection, installation and maintenance is, however, necessary to ensure good unit performance. Some of the major considerations in the application of a condenser are presented below. For additional information, contact the factory.

Air Circulation

In reviewing the system design and unit location, it is important that proper air circulation be provided. The best location is on an unobstructed roof top or on ground level away from walls and other barriers. Care must be taken when locating condensers in wells or enclosures or next to high walls. The potential for recirculation of hot, moist discharge air back into the fan intake exists. Recirculation raises the wet bulb temperature of the entering air causing the condensing pressure to rise above the design. For these cases, a discharge hood or ductwork should be provided to raise the overall unit height even with the adjacent wall, thereby reducing the chance of recirculation. Good engineering practice dictates that the evaporative condenser's discharge air not be directed or located close to or in the vicinity of building air intakes. Engineering assistance is available from the factory to identify potential recirculation problems and recommend solutions.

For additional information regarding layout of evaporative condensers, see Evapco Bulletin entitled *"Equipment Layout".*

Structural Steel Support

The recommended method of support for EVAPCO condensers is two structural "I" beams located under the outer flanges and running the entire length of the unit. Mounting holes 19mm in diameter, are located in the bottom channels of the pan section to provide for bolting to the structural steel; refer to certified drawings from the factory for bolt hole locations. Beams should be level to within 1.7 mm per meter before setting the unit in place. Do not level the unit by shimming

between it and the "I" beams as this will not provide proper longitudinal support.

Vibration Isolation

The fans on EVAPCO units are balanced and run virtually vibration free. In addition, the rotating mass is very small in relation to the total mass of the condenser, further reducing the possibility of objectionable vibration being transmitted to the building structure.

As a result, vibration isolation is generally not required. In those cases where it is determined that vibration isolation is necessary, spring type vibration isolator rails can be furnished. The rails are constructed of heavy gauge Z-725 hotdip galvanized steel for superior corrosion resistance. Rails are designed to be mounted between the condenser and the supporting steel framework. They are 90% efficient and have approximately 25 mm static deflection. Rails are designed for wind loading up to 80 km/hr. It is important to note that vibration isolation must be installed continuously along the full length of the condenser on both sides of the unit. Point isolators may be used between the supporting steel and the building framework, but not between the unit and the supporting steel

Indoor Installations

Centrifugal fan models can be installed indoors where it is desirable to hide the unit or where it is the only location available. Discharge ductwork is required for these installations. Normally it is best to use the room as a plenum for inlet air, but inlet ductwork can be used if required. The design of ductwork should be symmetrical to provide

even air distribution across both intake and discharge openings. The static pressure loss imposed by the ductwork must not exceed 125 Pa. Care must be taken to provide large access doors in the ductwork for accessibility to the unit fan section, eliminators and water distribution system for normal maintenance.

The centrifugal fan condenser can handle the external static of ductwork by using the next larger size fan motor. Units installed with inlet ductwork should also be ordered with the solid bottom panel option. Drawings are available from the factory showing size and location of duct connections.

Maintaining the Recirculated Water System

The heat rejection in a condenser is accomplished by the evaporation of a portion of the recirculated spray water. As this water evaporates, it leaves behind all of its mineral content and impurities. Therefore, it is important to bleed-off an amount of water equal to that which is evaporated to prevent the build-up of these impurities. If this is not done, the mineral or the acidic nature of the water will continue to increase. This will ultimately result in heavy scaling or a corrosive condition.

Applications

Bleed-off

Each unit supplied with a pump mounted on the side is furnished with a clear bleed line for visual inspection and a valve which, when fully open, will bleed-off the proper amount of water. If the make-up water supplying to the unit is relatively free of impurities, it may be possible to cut back the bleed, but the unit must be checked frequently to make sure scale is not forming. Make-up water pressure should be maintained between 140 and 340 kPa.

Water Treatment

In some cases the make-up will be so high in mineral content that a normal bleed-off will not prevent scaling. In these cases water treatment will be required and a reputable water treatment company familiar with the local water conditions should be consulted.

Any chemical water treatment used must be compatible with the galvanized construction of the unit. If acid is used for treatment, it should be accurately metered and the concentration properly controlled. The pH of the water should be maintained between 6.5 and 8.0. Units constructed of galvanized steel operating with circulating water having a pH of 8.3 or higher will require periodic passivation of the galvanized steel to prevent the formation of "white rust". Batch chemical feeding is not recommended because it does not afford the proper degree of control. If acid cleaning is required extreme caution must be exercised and only inhibited acids recommended for use with galvanized construction should be used. For more information see EVAPCO Bulletin entitled "Maintenance Instructions".

Control of Biological Contamination

Water quality should be checked regularly for biological contamination, If biological contamination is detected, a more aggressive water treatment and mechanical cleaning program should be undertaken. The water treatment program should be performed in conjunction with a qualified water treatment company. It is important that all internal surfaces be kept clean of accumulated dirt and sludge. In addition, the drift eliminators should be maintained in good operating condition **Note: The location of the evaporative condenser must be considered during the equipment layout stages of a project.** It is important to prevent the discharge air (potential of biological contamination) from being introduced into the fresh air intakes of the building.

Recirculating Water System - Freeze Protection

Water lines to and from the unit, spray pump and related piping should be heat traced and insulated up to the overflow level in order to protect from freezing.

The unit should not be operated dry (fans on, pump off) unless the basin is completely drained and the unit has been designed for dry operation.

REMOTE SUMP

Whenever a condenser is idled during subfreezing weather, the water in the sump must be protected from freezing and damaging the pan. The simplest and most reliable method of accomplishing this is with a remote sump tank located in a heated space in the building under the condenser. The recirculating water pump is mounted at the remote sump and whenever it is shut-off, all of the water drains into the indoor tank. When a condenser is ordered for remote sump operation, the standard float valve and strainer are omitted, and the unit is provided with an oversized bottom water outlet connection. Where a remote sump is not possible, a supplementary means of heating the pan water must be provided.

ELECTRIC HEATERS

Electric immersion heaters are available factory installed in the basin of the condenser. They are sized to maintain a +4 or $+5^{\circ}$ C pan water temperature with -18° C ambient air temperature with the fans and pumps off. They are furnished with a thermostat and low water protection device to cycle the heater on when required and to prevent the heater elements from energizing unless they are completely submerged. Components are enclosed in rugged, weatherproof enclosures for outdoor use. The heater power contactors and electric wiring are not included as standard.

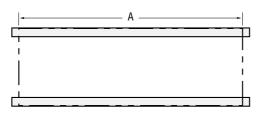
Electric Pan Heaters

	Ioutoro	
Model N	No.	kW*
LSCB 36 to LSCB 90 to LSCB 185 to LSCB 280 to LSCB 281 to LSCB 410 to LSCB 591 to LSCB 820 to LSCB 551 to LSCB 500 to	80 170 250 385 386 560 770 1120 515 805	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LSCB 800 to LSCB 1100 to LRC 25 to LRC 76 to LRC 108 to LRC 190 to LRC 188 to LRC 249 to	1030 1610 72 114 183 246 269 379	(2) 8 (2) 10 2 3 4 6 7 9
PMCB 175 to PMCB 250 to PMCB 290 to PMCB 450 to PMCB 850 to PMCB 1060 to PMCB 435 to PMCB 435 to PMCB 600 to PMCB 1015 to PMCB 1110 to	375 480 775 1030 1550 580 885 1120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

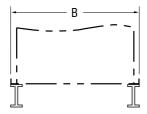
* Electric heater selection based on -18°C ambient temperature. For alternate low ambient heater selections, consult the factory.

Steel Support

The recommended support for EVAPCO condensers is structural "I" beams located under the outer flanges and running the entire length of the unit. Mounting holes, 19mm in diameter are located in the bottom channels of the pan section to provide for bolting to the structural steel. (Refer to certified drawings from the factory for bolt hole locations.)


Beams should be level to within 3mm per 2m before setting the unit in place. Do not level the unit by shimming between it and the "I" beams as this will not provide proper longitudinal support.

	LRC DIMENSIONS												
	Models		Α	В									
LRC	25 to	72	3083	1029									
LRC	76 to	114	3731	1540									
	108 to	183	4636	1540									
	190 to	246	5553	1540									
LRC	188 to 249 to	269 379	4629 5553	2388 2388									


LSCB DIMENSIONS								
Models				Α	В			
LSCB	36	to	80	1826	1235			
	90	to	120	2724	1235			
	135	to	170	3651	1235			
LSCB	185	to	250	3645	1664			
	280	to	385	5490	1664			
LSCB	281	to	386	3651	2388			
	410	to	560	5486	2388			
	581	to	770	7341	2388			
	820	to	1120	11011	2388			
LSCB	400	to	515	3648	2991			
	550	to	805	5493	2991			
	800	to	1030	7334	2991			
	1100	to	1610	11024	2991			

PMCB DIMENSIONS									
Models				Α	В				
РМСВ	175	to	240	3648	1927				
	250	to	375	5493	1927				
PMCB	290	to	480	3648	2991				
	450	to	775	5490	2991				
	850	to	1030	7334	2991				
	1060	to	1550	11024	2991				
PMCB	435	to	580	3651	3620				
	600	to	885	5490	3620				
	1015	to	1120	7341	3620				
	1110	to	1120	11024	3620				

Plan Views

End Elevations

